题 目:Minimum rank and cycle conditions for sign patterns that allow diagonalizability
主要内容:In this talk, we establish some new necessary/sufficient conditions for a sign pattern to allow diagonalization, and explore possible ranks of diagonalizable matrices with a specified sign pattern. In particular, it is shown that every irreducible sign pattern with minimum rank 2 allows diagonalization at rank 2 and also at the maximum rank. Sign patterns whose maximal zero submatrices are “strongly disjoint” are shown to have a composite cycle consisting of 1-cycles, 2-cycles, and at most one 3-cycle, with total length equal to the maximum rank; for such sign patterns, the maximum composite cycle length is invariant under row and column permutations.
报告人简介
李忠善(Zhongshan Li),美国Georgia State University(佐治亚州立大学)数学系终身正教授, 佐治亚州立大学科学与艺术学院职称和终身教授评定委员会主席。同时,担任美国《Mathematical Reviews》特约评论员、《JP Journal of Algebra, Number Theory and Applications》杂志编委、加拿大国家科学和工程研究委员会项目评审专家等职务。研究兴趣包括组合矩阵理论、代数图论、矩阵理论应用等。在《American Mathematical Monthly》,《Linear Algebra and Its Applications》,《SIAM J. on Discrete Mathematics》,《J. Combin. Theory Ser. B》,《Linear and Multilinear Algebra》,《Graphs and Combinatorics》,《IEEE Transactions on Neural Networks and Learning Systems》等重要国际学术期刊上发表论文60余篇,近五年发表21篇学术论文,并出版学术专著《Handbook of Linear Algebra》中的一章,主持或参与多项科研项目。
时 间:2019年6月27日(星期四)16:00-17:30
地 点:教师发展中心(第二教学楼七楼)
主 办:数学与统计学院
热忱欢迎全校师生参加!